Combinatorial entropy and phase diagram of partially ordered ice phases.
نویسندگان
چکیده
A close analytical estimate for the combinatorial entropy of partially ordered ice phases is presented. The expression obtained is very general, as it can be used for any ice phase obeying the Bernal-Fowler rules. The only input required is a number of crystallographic parameters, and the experimentally observed proton site occupancies. For fully disordered phases such as hexagonal ice, it recovers the result deduced by Pauling, while for fully ordered ice it is found to vanish. Although the space groups determined for ice I, VI, and VII require random proton site occupancies, it is found that such random allocation of protons does not necessarily imply random orientational disorder. The theoretical estimate for the combinatorial entropy is employed together with free energy calculations in order to obtain the phase diagram of ice from 0 to 10 GPa. Overall qualitative agreement with experiment is found for the TIP4P model of water. An accurate estimate of the combinatorial entropy is found to play an important role in determining the stability of partially ordered ice phases, such as ice III and ice V.
منابع مشابه
Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII–XIV transition
The pressure-temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high...
متن کاملThe preparation and structures of hydrogen ordered phases of ice.
Two hydrogen ordered phases of ice were prepared by cooling the hydrogen disordered ices V and XII under pressure. Previous attempts to unlock the geometrical frustration in hydrogen-bonded structures have focused on doping with potassium hydroxide and have had success in partially increasing the hydrogen ordering in hexagonal ice I (ice Ih). By doping ices V and XII with hydrochloric acid, we ...
متن کاملThe phase diagram of ice: a quasi-harmonic study based on a flexible water model.
The phase diagram of ice is studied by a quasi-harmonic approximation. The free energy of all experimentally known ice phases has been calculated with the flexible q-TIP4P/F model of water. The only exception is the high pressure ice X, in which the presence of symmetric O-H-O bonds prevents its modeling with this empirical interatomic potential. The simplicity of our approach allows us to stud...
متن کاملMagnetic multipole analysis of kagome and artificial spin-ice dipolar arrays
We analyze an array of linearly extended monodomain dipoles forming square and kagome lattices. We find that its phase diagram contains two distinct finite-entropy kagome ice regimes—one disordered, one algebraic—as well as a low-temperature ordered phase. In the limit of the islands almost touching, we find a staircase of corresponding entropy plateaux, which is analytically captured by a theo...
متن کاملIce XV: a new thermodynamically stable phase of ice.
A new phase of ice, named ice XV, has been identified and its structure determined by neutron diffraction. Ice XV is the hydrogen-ordered counterpart of ice VI and is thermodynamically stable at temperatures below approximately 130 K in the 0.8 to 1.5 GPa pressure range. The regions of stability in the medium pressure range of the phase diagram have thus been finally mapped, with only hydrogen-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 121 20 شماره
صفحات -
تاریخ انتشار 2004